C++数据结构复习(三)一一红黑树

因为红黑树还是自己画出来比较好理解,所以基本都是图辣

(其实就是懒得打字😂)

红黑树

想要更好地理解红黑树,可以先理解二叉查找树和 2-3 树。为何呢?首先,二叉查找树中的结点 是 2-结点(一个键两条链),引入 3-结点(两个键三条链),即成 2-3 树;然后将 2-3 树中 3- 结点分解,即成红黑树,故结合二叉查找树易查找和 2-3 树易插入的特点,便成了红黑二叉查找 树,简称红黑树。

五大性质

  • 1)每个结点要么是红的,要么是黑的。

  • 2)根结点是黑的。

  • 3)每个叶结点(叶结点即指树尾端 NIL 指针或 NULL 结点)是黑的。

  • 4)如果一个结点是红的,那么它的俩个儿子都是黑的。

  • 5)对于任一结点而言,其到叶结点树尾端 NIL 指针的每一条路径都包含相同数目的黑结点

二叉查找树

二叉查找树的性质就不多说了,很基本的树结构

二叉树的插入

根据BST的性质就可以知道,其实就是比较,然后找到插入的位置。

树的旋转

红黑树的插入

插入修复

分为三种情况,总的来说还是比较好理解的:

红黑树的删除

删除修复

对于红黑树的删除,还是有点复杂的,但是只要理解了红黑树的五大性质,还是很好掌握的:

其实主要就是考虑红生两黑子,每个结点到叶节点各个路径黑色数量一致两个性质的保证。

红黑树的C++实现

RBTree.h:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#ifndef RB_TREE_H
#define RB_TREE_H
#include <iostream>
#include <string>
#include <sstream>
#include <fstream>
using namespace std;
template<class KEY, class U>
class RB_Tree {
private:
RB_Tree(const RB_Tree& input) {}
const RB_Tree& operator=(const RB_Tree& input) {}
private:
enum COLOR {
RED,
BLACK
};
class RB_Node {
public:
RB_Node() {
right = NULL;
left = NULL;
parent = NULL;
}
COLOR RB_COLOR;
RB_Node* right;
RB_Node* left;
RB_Node* parent;
KEY key;
U data;
};
public:
RB_Tree() {
this->m_nullNode = new RB_Node();
this->m_root = m_nullNode;
this->m_nullNode->right = this->m_root;
this->m_nullNode->left = this->m_root;
this->m_nullNode->parent = this->m_root;
this->m_nullNode->RB_COLOR = BLACK;
}
bool Empty() {
if (this->m_root == this->m_nullNode) {
return true;
} else {
return false;
}
}
//查找key
RB_Node* find(KEY key) {
RB_Node* index = m_root;
while (index != m_nullNode) {
if (key < index->key) {
index = index->left; // 比当前的小,往左
} else if (key > index->key) {
index = index->right; // 比当前的大,往右
} else {
break;
}
}
return index;
}
bool Insert(KEY key, U data) {
RB_Node* insert_point = m_nullNode;
RB_Node* index = m_root;
while (index != m_nullNode) {
insert_point = index;
if (key < index->key) {
index = index->left;
} else if (key > index->key) {
index = index->right;
} else {
break;
}
}
RB_Node* insert_node = new RB_Node();
insert_node->key = key;
insert_node->data = data;
insert_node->RB_COLOR = RED;
insert_node->right = m_nullNode;
insert_node->left = m_nullNode;
//如果插入一棵空树
if (insert_point == m_nullNode) {
m_root = insert_node;
m_root->parent = m_nullNode;
m_nullNode->left = m_root;
m_nullNode->right = m_root;
m_nullNode->parent = m_root;
} else {
if (key < insert_point->key) {
insert_point->left = insert_node;
} else {
insert_point->right = insert_node;
}
insert_node->parent = insert_point;
}
InsertFixUp(insert_node); // 恢复红黑树性质
}
void InsertFixUp(RB_Node* node) {
while (node->parent->RB_COLOR == RED) {
// Z的父亲为祖父的左孩子
if (node->parent == node->parent->parent->left) {
RB_Node* uncle = node->parent->parent->right;
//case①: Z的叔叔Y是红色的
if (uncle->RB_COLOR == RED) {
node->parent->RB_COLOR = BLACK;
uncle->RB_COLOR = BLACK; //1.把父->黑、叔->黑
node->parent->parent->RB_COLOR = RED; //2.祖->红
node = node->parent->parent; //3.祖->当前结点
}
//case②: Z的叔叔是黑色的
else if (uncle->RB_COLOR == BLACK) {
//case②.1: Z是右孩子
if (node == node->parent->right) {
node = node->parent; // 1.父->当前结点
RotateLeft(node); // 2.左旋
}
//case②.2: Z是左孩子
node->parent->RB_COLOR = BLACK; // 1.父->黑
node->parent->parent->RB_COLOR = RED; // 2.祖父->红
RotateRight(node->parent->parent); // 3.祖父为Pivot右旋
}
}
// Z的父亲为祖父的右孩子,对称
else {
RB_Node* uncle = node->parent->parent->left;
if (uncle->RB_COLOR == RED) {
node->parent->RB_COLOR = BLACK;
uncle->RB_COLOR = BLACK;
node->parent->parent->RB_COLOR = RED;
node = node->parent->parent;
}
else if (uncle->RB_COLOR == BLACK) {
if (node == node->parent->right) {
node = node->parent;
RotateRight(node); // 左旋改为右旋
}
node->parent->RB_COLOR = BLACK;
node->parent->parent->RB_COLOR = RED;
RotateLeft(node->parent->parent); // 右旋改为左旋
}
}
}
m_root->RB_COLOR = BLACK; // 最后把根结点涂黑即可
}
//左旋代码实现
bool RotateLeft(RB_Node* node) {
if (node == m_nullNode || node->right == m_nullNode) {
return false;
}
RB_Node* lower_right = node->right;
lower_right->parent = node->parent;
node->right = lower_right->left;
if (lower_right->left != m_nullNode) {
lower_right->left->parent = node;
}
// 旋转及结点为根结点
if (node->parent == m_nullNode) {
m_root = lower_right;
m_nullNode->left = m_root;
m_nullNode->right = m_root;
} else {
if (node == node->parent->left) {
node->parent->left = lower_right;
} else {
node->parent->right = lower_right;
}
}
node->parent = lower_right;
lower_right->left = node;
}
// 右旋代码实现
bool RotateRight(RB_Node* node) {
if (node == m_nullNode || node->left == m_nullNode) {
return false;
}
RB_Node* lower_left = node->left;
node->left = lower_left->right;
lower_left->parent = node->parent;
if (lower_left->right != m_nullNode) {
lower_left->right->parent = node;
}
if (node->parent == m_nullNode) {
m_root = lower_left;
m_nullNode->left = m_root;
m_nullNode->right = m_root;
} else {
if (node == node->parent->right) {
node->parent->right = lower_left;
} else {
node->parent->left = lower_left;
}
}
node->parent = lower_left;
lower_left->right = node;
}
bool Delete(KEY key) {
RB_Node* delete_point = find(key);
if (delete_point == m_nullNode) {
return false;
}
// 删除结点 有两个儿子
if (delete_point->left != m_nullNode && delete_point->right != m_nullNode) {
RB_Node* successor = InOrderSuccessor(delete_point);
delete_point->data = successor->data;
delete_point->key = successor->key;
delete_point = successor;
}
RB_Node* delete_point_child;
if (delete_point->right != m_nullNode) {
delete_point_child = delete_point->right;
} else if (delete_point->left != m_nullNode) {
delete_point_child = delete_point->left;
} else {
delete_point_child = m_nullNode;
}
delete_point_child->parent = delete_point->parent;
// 删除的是根节点
if (delete_point->parent == m_nullNode) {
m_root = delete_point_child;
m_nullNode->parent = m_root;
m_nullNode->left = m_root;
m_nullNode->right = m_root;
} else if (delete_point == delete_point->parent->right) {
delete_point->parent->right = delete_point_child;
} else {
delete_point->parent->left = delete_point_child;
}
// 如果删除的是黑色结点 + 不是倒数第二个结点且父结点不为空
if (delete_point->RB_COLOR == BLACK && !(delete_point_child == m_nullNode &&
delete_point_child->parent == m_nullNode)) {
DeleteFixUp(delete_point_child);
}
delete delete_point;
return true;
}
// 删除修复
void DeleteFixUp(RB_Node* node) {
while (node != m_root && node->RB_COLOR == BLACK) {
// 同样先考虑是父结点的左结点的情况
if (node == node->parent->left) {
RB_Node* brother = node->parent->right;
// case①: X 的兄弟结点 W 是红色的
if (brother->RB_COLOR == RED) {
brother->RB_COLOR = BLACK; //1.兄->红
node->parent->RB_COLOR = RED; //2.父->红
RotateLeft(node->parent); //3.父为Pivot左旋
}
// case②: X 的兄弟结点 W 是黑色的
else {
// case②.1: 且 W 两个孩子都是黑的
if (brother->left->RB_COLOR == BLACK && brother->right->RB_COLOR == BLACK) {
brother->RB_COLOR = RED; //1. 兄->红
node = node->parent; //2.父->当前结点
}
// case②.2: W 的孩子 左红右黑
else if (brother->right->RB_COLOR == BLACK) {
brother->RB_COLOR = RED; //1.兄->红
brother->left->RB_COLOR = BLACK; //2.兄左子->黑
RotateRight(brother); //3.父为Pivot右旋
}
// case②.3: W 的孩子 左黑右红
brother->RB_COLOR = node->parent->RB_COLOR; //1. 兄->父色
node->parent->RB_COLOR = BLACK; //2. 父->黑
brother->right->RB_COLOR = BLACK; //3.兄右子->黑
RotateLeft(node->parent); //4.父为Pivot左旋
node = m_root;
}
}
else {
// 同样的考虑是父节点的右子节点的情况,也是只改变旋转
RB_Node* brother = node->parent->left;
// case①: X 的兄弟结点 W 是红色的
if (brother->RB_COLOR == RED) {
brother->RB_COLOR = BLACK; //1.兄->红
node->parent->RB_COLOR = RED; //2.父->红
RotateRight(node->parent); //3.父为Pivot左旋
}
// case②: X 的兄弟结点 W 是黑色的
else {
// case②.1: 且 W 两个孩子都是黑的
if (brother->left->RB_COLOR == BLACK && brother->right->RB_COLOR == BLACK) {
brother->RB_COLOR = RED; //1. 兄->红
node = node->parent; //2.父->当前结点
}
// case②.2: W 的孩子 左红右黑
else if (brother->right->RB_COLOR == BLACK) {
brother->RB_COLOR = RED; //1.兄->红
brother->left->RB_COLOR = BLACK; //2.兄左子->黑
RotateLeft(brother); //3.父为Pivot右旋
}
// case②.3: W 的孩子 左黑右红
brother->RB_COLOR = node->parent->RB_COLOR; //1. 兄->父色
node->parent->RB_COLOR = BLACK; //2. 父->黑
brother->right->RB_COLOR = BLACK; //3.兄右子->黑
RotateRight(node->parent); //4.父为Pivot右旋
node = m_root;
}
}
}
m_nullNode->parent = m_root; // 最后将node置为根结点
node->RB_COLOR = BLACK; // 并改为黑色
}
inline RB_Node* InOrderPredecessor(RB_Node* node) {
// 空结点 没有 predecessor 前驱
if (node == m_nullNode) {
return m_nullNode;
}
RB_Node* result = node->left;
//找到左子树的最大(右)结点
while (result != m_nullNode) {
if (result->right != m_nullNode) {
result = result->right;
} else {
break;
}
}
// 循环结束时意味着 result==null 或者result 的右子节点 == null
if (result == m_nullNode) {
RB_Node* index = node->parent;
result = node;
while (index != m_nullNode && result == index->left) {
result = index;
index = index->parent;
}
result = index; // 第一个parent 的右结点 或者 null
}
return result;
}
inline RB_Node* InOrderSuccessor(RB_Node* node) {
if (node == m_nullNode) {
return m_nullNode;
}
RB_Node* result = node->right;
// 找到node 的右子树的最小(左)结点
while (result != m_nullNode) {
if (result->left != m_nullNode) {
result = result->left;
} else {
break;
}
}
// 循环结束时意味着 result==null 或者result 的左子节点 == null
if (result == m_nullNode) {
RB_Node* index = node->parent;
result = node;
while (index != m_nullNode && result == index->right) {
result = index;
index = index->parent;
}
result = index; // 第一个parent 的左结点 或者 null
}
return result;
}
// debug
void InOrderTraverse() {
InOrderTraverse(m_root);
}
void CreateGraph(string filename) {
}
void InOrderCreate(ofstream& file, RB_Node* node) {
}
void InOrderTraverse(RB_Node* node) {
if (node == m_nullNode) {
return;
} else {
InOrderTraverse(node->left);
cout << node->key << endl;
InOrderTraverse(node->right);
}
}
~RB_Tree() {
clear(m_root);
delete m_nullNode;
}
private:
// utility function for destructor to destruct object
void clear(RB_Node* node) {
if (node == m_nullNode) {
return;
} else {
clear(node->left);
clear(node->right);
delete node;
}
}
private:
RB_Node *m_nullNode;
RB_Node *m_root;
};
#endif

测试文件RBTree.cpp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>
#include <sstream>
#include "RBTree.h"
using namespace std;
int main() {
RB_Tree<int, int> tree;
vector<int> v;
for (int i = 0; i < 20; i++) {
v.push_back(i);
}
random_shuffle(v.begin(), v.end());
copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));
cout << endl;
stringstream sstr;
for (int i = 0; i < v.size(); ++i) {
tree.Insert(v[i], i);
cout << "Insert:" << v[i] << endl;
}
for (int i = 0; i < v.size(); ++i) {
cout << "Delete:" << v[i] << endl;
tree.Delete(v[i]);
tree.InOrderTraverse();
}
cout << endl;
tree.InOrderTraverse();
return 0;
}

测试结果

……